セミナー「医療分野でのICTの活用:IT企業の貢献」

主催:情報通信政策フォーラム
日時:1010日(水曜日)1830分から2030
場所:ワイム貸会議室四谷三丁目 会議室B
講師:浜田 哲(日本電気株式会社 社会公共BU未来都市づくり推進本部シニアマネージャー)
司会:山田 肇(ICPF 

浜田氏の講演資料はこちらにあります

冒頭、浜田氏は概略次のように講演した。

ヘルスケア分野のトレンド

  • ヘルスケア(健康・医療・介護分野全般)は、未曾有の超少子高齢化と人口減少により改革待ったなしの状態にある。医療費・介護費の適正化や新産業の創出など、次世代ヘルスケア産業の創出が期待されている。
  • 政府は次世代ヘルスケア・システムの構築を掲げ、『未来投資戦略2018』にも明記された。すべてを公的保険に頼るのではなく保険外サービスを活用することや、オンライン医療・ケアの充実させていくためには、ICTの技術革新をフル活用していくことが重要となっている。
  • ヘルスケア分野には国、自治体、民間企業など多くのステークホルダーがおり、それぞれ関心の高いキーワードがある。国が掲げるデータヘルス改革関連の政策には10の改革メニューがあり、AIや医療等分野における識別子といったテーマが列記されている。自治体はEBPMに注目している。
  • ヘルスケア分野でのICT活用は「健康寿命の延伸」と「持続可能な社会保障制度」といった社会的課題解決につなげていくことが必要である。未病・予防のケア、0次予防、EBxEvidence-Based XXX)、セルフケアやウェルネス志向の行動変容などを進めるべきである。

ヘルスケア分野におけるICT活用事例

  • NECが取り組んでいる事例では、AIやビッグデータ(BD)分析といった技術を活用している。
  • 倉敷中央病院では来年6月に予定している「予防医療プラザ」オープンに向け、健診結果をAI分析し、予測シミュレーションを行うNEC健診結果予測シミュレーションを活用した共同活動を開始している。健診結果データと生活習慣データを基に、AI技術を使って1年後・2年後といったスパンで健診結果の予測(リスク)をシミュレーションする。生活改善シミュレーションでは、例えば「食べるのが速い」と言う受診者には「食べないとこんな病気の発症リスクが上がる」「もっとゆっくり食べてみてはどうか」といった指導を行い生活改善につなげる。ICTツールを使って見える化することで、保健指導を受ける人を増やし効果をあげている。
  • 医療法人社団KNI(北原国際病院)とは、医療の現場での課題解決にAIを活用することに取り組んでいる。現在取り組んでいるのは、ベッドにいる患者の転倒等「不穏行動」の予兆を事前検知することで事故防止につなげており、実証では不穏が起きる40分前の時点で71%が検知可能となった。また、退院支援の退院予測も行っており、このようなケアを行うとどれくらいで退院できるかを予測することで、入院期間を短くしベッド調整もやりやすくなる。
  • 湘南慶育病院では外来待合室で問診をタブレットで行っている。いずれは自宅からも同様の問診や診療を受けられるようにする「Hospital in the Home」の実現につながるサービスになると考えている。
  • 国立がん研究センターとはAIを活用したリアルタイム内視鏡診断サポートシステムの開発に取り組んでいる。深層学習型AIにより、内視鏡の画像から「ポリープの確度○○%」といった情報がリアルタイムで表示され、医師の診断をサポートする。
  • 0次予防、社会疫学的な視点では千葉大学予防医学センターの近藤教授と共同研究を行っている。近藤教授らが行っているJAGES(日本老年学的評価研究)は、3年に1回、自治体を通じて高齢者を対象に独自調査を行っており、厚労省の調査(介護予防・日常生活圏域ニーズ調査)に不足しているデータを収集している。2016年の最新調査では、41自治体、20万人からデータを収集し、延べ50万人分のデータを蓄積している。JAGESの研究成果の一例として、スポーツ等の社会参加が高い割合の地域は転倒や認知症・うつのリスクが低いといった傾向が明らかになった。前期高齢者のIADL低下者の割合は市町村で2倍以上の格差があり、郊外で悪化者が多いことが分かった。都市部は歩く人が多く、郊外ではある人が少ないことが影響しており、エビデンスが積みあがってきた。また、単に社会参加といっても、コミュニティ内で何らかの「役職」を持った活動(特に定年退職後の男性が顕著!)や、比較的会話の少ないジョギングやカラオケよりも会話が弾む旅行やゴルフなどの活動の方が、認知症等のリスクが低い傾向にあるという、興味深い結果も出している。
  • JAGESでは地域ごとに分析した結果から地域診断書を作成し、エビデンスをベースにして地域ごとに適切な支援事業を行うことができるよう、PDCAサイクルを回していこうとしている。
  • 自治体などが保有しているデータだけの分析ではなく、バイタルデータも加えてより深い分析をしたいというニーズに対応するため、ヘルスケアベンチャー企業であるFiNCと共同研究している。靴やインソールに搭載したセンサーから歩行の様態を把握して健康状態を知るという研究に取り組んでいる。歩数や歩速だけでなく、歩容からいろいろなことがわかるのではないかと考えている。

ICT企業にとっての課題

  • 個人情報保護法改正のポイントを整理すると、第一に個人データ利活用が目的としてより明確になったことがある。第二に「要配慮個人情報」が新設されて、機微情報のグレーゾーンが明確になった。また、匿名加工情報が新設されたことでデータ活用や第三者提供がしやすくなった面もある。
  • k-匿名化は、個人が特定される確率をk分の1に低減して、他情報との照合から個人を特定することを防ぐ技術のひとつである。匿名加工データを利用することで、病院、製薬会社、保険事業者等が新しい価値を創造していくことができる。
  • NECではデータ匿名化ソリューションを開発し、適正な匿名化を簡易化している。過度な匿名化はデータ価値を損なうこともあるため、適切な匿名加工のチューニングが求められている。
  • IT企業としては改正個人情報保護法によりグレーゾーンが小さくなり、利活用を委縮してしまうということから開放された部分もある。一方で、個人情報保有組織のICTリテラシーを高めることについてIT企業として支援していくことも重要である。
  • 産官学の連携も増えており、官が保有するデータを利用して分析することも多くなっている。しかし、学術研究を生業とする学術機関と異なり民間企業ではデータの取り扱いで配慮すべきことが多い。例えば自治体のデータを民間企業が取り扱うには、自治体の条例改正や議会審議会が必要な例もあり、ハードルが高いことは確かである。

ICT活用に期待されること

  • ICTが定常事務作業を自動化するRPAClass1)により、職員はより高度な業務に時間が割くことができるようになる。また、属人的な専門スキルをICTが補填することも可能で、EPA:Enhanced AutimationClass2)と言われる、医療現場の意思決定を支援するAI技術の実用化が進んでいる。CA:Cognitive AutomationClass3)と言われる、意思決定まで自動化する技術はコールセンターの自動応答などで始まっているが、医療現場での導入はまだ難しい。
  • 次世代ヘルスケアでは、すべての施策で「エビデンス」が必須となっている。現在は、行政機関が自ら保有しているデータをフル活用するということになっているが、最終的にはそれでは足りないと思われる。価値を生むために必要なデータをどう収集するかが重要であるが、住民や利用者の本人同意が得られることが必須となる。また、情報銀行と呼ばれる構想のように、個人が信頼できる機関にデータ(資産)を預託し、適正なインセンティブが付与されることも進めていくべきであろう。

講演の後、以下のような質疑があった。

データ収集について
Q(質問):収集する目的を最初から設定しておかないと、いくら集めてもゴミになってしまう。ビジネスとしてのデータ収集はしているのか?
A(回答):今回紹介したFiNCのような企業は、利用者向けサービスや広報等を充実化させて個人の健康志向の意欲やニーズを高めながら、利用者が測定したバイタルデータや体組成計のデータをクラウドにあげてもらうことで大量データを収集できるビジネスモデルを確立しつつある。民間でデータ収集するビジネスは国内で次々と生まれている。一方で、GAFAに対抗するには1企業レベルではなく、国レベルでも、どのように質の高いデータを収集したり連結したりするかを検討しないと、社会課題を解決するための十分な量を得ることは難しいだろう。
C(コメント):ドコモから「カラダのキモチ」というアプリがでているが、女性の基礎体温データを収集し、それに基づくアドバイスしている。数百万人のユーザがおり、本人のメリットもありながらデータ収集も可能なビジネスモデルになっている。今後は、このようなデータと医療機関の持つ医療データを結びつけるといったことを考えていくことが必要になる。また、バイオバンクを構築している国立がん研究センターでは、外来患者すべてにバイオバンクの登録を依頼し生体試料を収集している。未来のがん治療のためにという目的を理解して、ほとんどの患者が協力してくれているという。
QNECでは医療情報を俯瞰した報告書を出していたが、目的ごとにDBができてしまっていて連携ができていない。精緻なデータ分析のために、何をキーにしてデータをつなぐかが見えてきていない。国のやり方はまだ足りないと思うが?
A:国のデータヘルス改革では、「医療等分野における識別子」が議論されており、被保険者番号を世帯単位から個人単位化するとともに、「公的医療保険加入(被保険者番号)の履歴」を国が一元的に収集して、これをマスターにすることが決まっている。生活保護受給者や外国人は含まれないが、12000万人強のインデックスは把握できるはずである。しかし、過去に蓄積されたデータは十分に連結して分析することはできない。今後蓄積されていくデータはこれから長い年月をかけた新たなコホート研究にも活かせる可能性がある。民間としては、国としてこういう取り組みを期待したい。
QPDSや情報銀行では過去の情報を預けることになるが、どのような利用シーンでのインセンティブが考えられるか。
A 学術研究や製薬等での利用も考えられるが、本人同意が原則なので、PHRやセルフケアのために自分で自分の情報を預け、自分の受益のために自分の判断でデータを利用することが分かりやすいケースだと考える。なお、情報銀行の名のとおり、データという資産の預託には信頼が重要なので、金融機関が参画するケースがでてきている。 

AIの信頼性について
Q:米国FDAは、AIを利用した医療用ソフトウェア等に対しては、利用を重ねると改善されるのが前提になるため、ソフトウェアそのものではなく、改善努力を重ねる開発組織を認可する方向に転換した。日本はどうだろうか?
A:日本には現行の医師法の下、AIシステムはあくまで医療従事者の支援に限定されることになる。AIが診断等の結果責任や改善責任を負うことまで求めるのは難しいのではないかと思う。皆さんのご意見もお聞きしたい。
C:米国では最終判断までAIができる場合もあると聞いている。
C:哲学論に近くなるが、「AIがどこまでやるか」を「誰が決めるのか」ということになる。最終的には、患者が「どこまで受けたいのか」になるのではないか。「医師の判断とAIの判断、どっちがいい?」と患者が聞かれたら「AI」と回答する人もいるかもしれない。倫理面の問題はあるが風邪など軽微なものはAIに任せる、がんではAIは支援にとどめるといった切り分けがエビデンスを蓄積することでできるようになるのかもしれない。
C:総合科学技術イノベーション会議の下に設置された人工知能技術戦略会議では、人間中心のAI社会原則がとりまとめられている。その中では、開発者の社会に対する説明責任も掲げられている。
C:富士通が開発しているAIでは、AIが提示した回答の根拠を示すことできるとあったが、今後はそのようなことが重要になるのかもしれない。
ANECもすでに「異種混合学習」というAIエンジンを持っており、なぜそのような結果を導き出したかというロジック・説明因子を説明できるホワイトボックス型のAIを実用化している。今後、このようなAI技術は重要になる。 

開発中のサービスについて
Q:お話を聞くとケア(予防)でなくキュア(治療)に注力されているように思うが、将来的にはケアが重要になると思う。ケアのためのサービスの部分の議論はどうか?
A:今日は医療現場の事例を多く挙げさせていただいたが、ケアに関連する取り組みも増えている。今後はキュアよりケアが重要になるのは先述のとおり。自治体と協働している事例でも、地元のフィットネスセンターや薬局チェーンといった地域産業を活性化していく政策立案に対してエビデンスを提供することがある。
また、今回紹介した健診データを利用した従業員の健康予防の事例は、健康経営の視点で、会社の中の各事業部の残業時間、ストレスチェックの結果などを数値化し、働き方改革につなげるケアの例である。
高齢者向け、特に独居生活の方向けには、フレイル予防や認知症予防のためタブレットを使ってコミュニケーションを支援するロボットの実用化を計画している。利用者の顔の画像や音声等を収集・分析し、体調や行動の変容に気づいてフォローしてあげれるようになるかもしれない。 

ヘルスケアビジネスの可能性について
Q:医療機関と協働しているが事例があったが、ビジネスとして考えると医療機関からお金をいただくという形がメインになるのか?
A:これは難しい問題である。医療機関と協働している事例は、かなり先進的なもので、全国の医療機関で導入(投資)するには難しい点もあると思っている。その一つの要因としては、日本では公的保険制度(医療の場合は診療報酬や公費負担、地方単独助成等)の恩恵が手厚すぎることが挙げられる。将来のビジネスとして成立できるようになるには、国が進める公的保険外のサービスをどう増やすかという部分にも大きく関連してくると思われる。
C:経済産業省は、予防・健康管理に投資することでトータルの医療・介護費を減らしていこうとしている。そのためにもヘルスケア産業の創出が重要と考えているので、IT企業のビジネスが予防・健康管理に力を入れればチャンスが出てくるだろう。
QIT企業の貢献と観点で、AIによるケアはやってみても結果がわからないということも多い。私もIT企業勤務だが、無駄なことをやるのが大きなIT企業の役割だったりするのではないかという話もある。どう考えるか?
A:ケアはアウトカムを定量的に測りにくい(その評価指標が目下の課題)であり、足の長い取り組みである。個人的には、すぐにビジネスに結びつく話ばかりではないと思う。中長期的に社会に役立つ貢献活動も重要であると考えている。
C:前回の講演にあったが、国連SDG’sへの貢献が企業として重要になっている。投資ファンドには、SDG’sに貢献している企業を対象とするファンドを組んでいる例もある。株式市場での企業評価を高める意味でも重要だ。
Q:現状の医療システムがいつまで維持できるかは怪しい。希望になってしまうが、合理的な形で医療費削減につなげることができるのがICTであるので、IT企業に頑張ってもらいたいと思っている。
A:公的なサービスで提供されていたものを「自分で支払ってください」という方向に転換するのは急には難しいと思う。現在の日本の公的保険制度が手厚すぎるため、それに甘えてしまう習慣が根強いためだ。しかし、近年はアウトカムが重視され、介護では予防への取り組みに対する努力支援制度、医療保険でもインセンティブ制度が導入されるようになってきており、効率化や適正化へ取り組みを後押ししている。
C:国保データを地域ごとに分析し公開するようになって、自治体が自分たちの姿を見つめ直すことにつながっている。ビッグデータ分析レベルではあるが、こういうことが重要である。
Q:地方自治体の職員だが、困っているのは健康無関心層へのアプローチである。健診を受けない、病院に行かない人たちのデータをどうやって集めるか、彼らに対する政策をエビデンスベースで行いたいが暗中模索である。
A:確かに大変難しい政策課題の一つだと思う。その中でも、JAGESではポピュレーション・アプローチとして要介護認定を受けていない65歳以上を対象としているが、70%もの回答率は関心の高さを表しているように思う。ご指摘のように、課題となるのは若年層である。特に社会保険加入者(会社の従業員)は健診勧奨が効きやすいが、国保の方は難しい。今回紹介した健診結果のシミュレーションは自治体でも期待が広がりつつあるが、健診率向上等の施策にICTを活用して貢献できることは現状限りがあると感じている。
C:弘前大学COIでは、2週間後に結果が送られても行動変容につながらないとの仮説から、健康診断のその場で結果が出てアドバイスをすることで効果をあげようとしている。中小企業が多い荒川区では、パチンコ屋さんの前で短い時間で健康診断するなど「押しかけ」型の施策を取って健康無関心層にアプローチできないか考えていた。